Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In an information-seeking conversation, a user may ask questions that are under-specified or unanswerable. An ideal agent would interact by initiating different response types according to the available knowledge sources. However, most current studies either fail to or artificially incorporate such agent-side initiative. This work presents InSCIt, a dataset for Information-Seeking Conversations with mixed-initiative Interactions. It contains 4.7K user-agent turns from 805 human-human conversations where the agent searches over Wikipedia and either directly answers, asks for clarification, or provides relevant information to address user queries. The data supports two subtasks, evidence passage identification and response generation, as well as a human evaluation protocol to assess model performance. We report results of two systems based on state-of-the-art models of conversational knowledge identification and open-domain question answering. Both systems significantly underperform humans, suggesting ample room for improvement in future studies.1more » « less
- 
            Extracting entities and their relations from text is an important task for understanding massive text corpora. Open information extraction (IE) systems mine relation tuples (i.e., entity arguments and a predicate string to describe their relation) from sentences. However, current open IE systems ignore the fact that global statistics in a large corpus can be collectively leveraged to identify high-quality sentence-level extractions. In this paper, we propose a novel open IE system, called ReMine, which integrates local context signal and global structural signal in a unified framework with distant supervision. The new system can be efficiently applied to different domains as it uses facts from external knowledge bases as supervision; and can effectively score sentence-level tuple extractions based on corpus-level statistics. Specifically, we design a joint optimization problem to unify (1) segmenting entity/relation phrases in individual sentences based on local context; and (2) measuring the quality of sentence-level extractions with a translating-based objective. Experiments on real-world corpora from different domains demonstrate the effectiveness and robustness of ReMine when compared to other open IE systems.more » « less
- 
            Taxonomies are of great value to many knowledge-rich applications. As the manual taxonomy curation costs enormous human effects, automatic taxonomy construction is in great demand. However, most existing automatic taxonomy construction methods can only build hypernymy taxonomies wherein each edge is limited to expressing the “is-a” relation. Such a restriction limits their applicability to more diverse real-world tasks where the parent-child may carry different relations. In this paper, we aim to construct a task-guided taxonomy from a domain-specific corpus, and allow users to input a “seed” taxonomy, serving as the task guidance. We propose an expansion-based taxonomy construction framework, namely HiExpan, which automatically generates key term list from the corpus and iteratively grows the seed taxonomy. Specifically, HiExpan views all children under each taxonomy node forming a coherent set and builds the taxonomy by recursively expanding all these sets. Furthermore, HiExpan incorporates a weakly-supervised relation extraction module to extract the initial children of a newly expanded node and adjusts the taxonomy tree by optimizing its global structure. Our experiments on three real datasets from different domains demonstrate the effectiveness of HiExpan for building task-guided taxonomies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available